
NAG Fortran Library Routine Document

D03PHF=D03PHA

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03PHF=D03PHA integrates a system of linear or nonlinear parabolic partial differential equations (PDEs)
in one space variable, with scope for coupled ordinary differential equations (ODEs). The spatial
discretisation is performed using finite differences, and the method of lines is employed to reduce the PDEs
to a system of ODEs. The resulting system is solved using a backward differentiation formula method or a
Theta method (switching between Newton’s method and functional iteration).

D03PHA is a version of D03PHF that has additional parameters in order to make it safe for use in
multithreaded applications (see Section 5 below).

2 Specifications

2.1 Specification for D03PHF

SUBROUTINE D03PHF(NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X, NCODE,
1 ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL, NORM, LAOPT,
2 ALGOPT, W, NW, IW, NIW, ITASK, ITRACE, IND, IFAIL)

INTEGER NPDE, M, NPTS, NCODE, NXI, NEQN, ITOL, NW, IW(NIW),
1 NIW, ITASK, ITRACE, IND, IFAIL
real TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*),

1 ALGOPT(30), W(NW)
CHARACTER*1 NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, ODEDEF

2.2 Specification for D03PHA

SUBROUTINE D03PHA(NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X, NCODE,
1 ODEDEF, NXI, XI, NEQN, RTOL, ATOL, ITOL, NORM, LAOPT,
2 ALGOPT, W, NW, IW, NIW, ITASK, ITRACE, IND, IUSER,
3 RUSER, CWSAV, LWSAV, IWSAV, RWSAV, IFAIL)

INTEGER NPDE, M, NPTS, NCODE, NXI, NEQN, ITOL, NW, IW(NIW),
1 NIW, ITASK, ITRACE, IND, IUSER(*), IWSAV(505), IFAIL
real TS, TOUT, U(NEQN), X(NPTS), XI(*), RTOL(*), ATOL(*),

1 ALGOPT(30), W(NW), RUSER(*), RWSAV(1100)
LOGICAL LWSAV(100)
CHARACTER*1 NORM, LAOPT
CHARACTER*80 CWSAV(10)
EXTERNAL PDEDEF, BNDARY, ODEDEF

3 Description

D03PHF=D03PHA integrates the system of parabolic-elliptic equations and coupled ODEs

XNPDE
j¼1

Pi;j

@Uj

@t
þQi ¼ x�m @

@x
ðxmRiÞ; i ¼ 1; 2; . . . ;NPDE; a � x � b; t � t0; ð1Þ

Fiðt; V ; _VV ; �; U�; U�
x; R

�; U�
t ; U

�
xtÞ ¼ 0; i ¼ 1; 2; . . . ;NCODE; ð2Þ

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

In (1), Pi;j and Ri depend on x, t, U , Ux and V ; Qi depends on x, t, U , Ux, V and linearly on _VV . The

vector U is the set of PDE solution values

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.1

Uðx; tÞ ¼ ½U1ðx; tÞ; . . . ; UNPDEðx; tÞ�T ;
and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution
values

V ðtÞ ¼ ½V1ðtÞ; . . . ; VNCODEðtÞ�T ;

and _VV denotes its derivative with respect to time.

In (2), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.

These points may or may not be equal to some of the PDE spatial mesh points. U�, U�
x , R

�, U�
t and U�

xt

are the functions U , Ux, R, Ut and Uxt evaluated at these coupling points. Each Fi may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F ¼ G�A _VV �B
U�
t

U�
xt

� �
; ð3Þ

where F ¼ ½F1; . . . ; FNCODE�T, G is a vector of length NCODE, A is an NCODE by NCODE matrix, B is

an NCODE by ðn� � NPDEÞ matrix and the entries in G, A and B may depend on t, �, U�, U�
x and V . In

practice the user only needs to supply a vector of information to define the ODEs and not the matrices A
and B. (See Section 5 for the specification of the user-supplied procedure ODEDEF.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xNPTS

are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xNPTS. The co-ordinate system in
space is defined by the values of m; m ¼ 0 for Cartesian co-ordinates, m ¼ 1 for cylindrical polar co-
ordinates and m ¼ 2 for spherical polar co-ordinates.

The PDE system which is defined by the functions Pi;j, Qi and Ri must be specified in a subroutine

PDEDEF supplied by the user.

The initial values of the functions Uðx; tÞ and V ðtÞ must be given at t ¼ t0.

The functions Ri which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

�iðx; tÞRiðx; t; U; Ux; V Þ ¼ �iðx; t; U; Ux; V ; _VV Þ; i ¼ 1; 2; . . . ;NPDE; ð4Þ
where x ¼ a or x ¼ b.

The boundary conditions must be specified in a subroutine BNDARY provided by the user. The function

�i may depend linearly on _VV .

The problem is subject to the following restrictions:

(i) In (1), _VVjðtÞ, for j ¼ 1; 2; . . . ;NCODE, may only appear linearly in the functions Qi, for

i ¼ 1; 2; . . . ;NPDE, with a similar restriction for �;

(ii) Pi;j and the flux Ri must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) the evaluation of the terms Pi;j, Qi and Ri is done approximately at the mid-points of the mesh XðiÞ,
for i ¼ 1; 2; . . . ;NPTS, by calling the routine PDEDEF for each mid-point in turn. Any
discontinuities in these functions must therefore be at one or more of the mesh points
x1; x2; . . . ; xNPTS;

(v) at least one of the functions Pi;j must be non-zero so that there is a time derivative present in the PDE

problem;

(vi) if m > 0 and x1 ¼ 0:0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x ¼ 0:0 or by
specifying a zero flux there, that is �i ¼ 1:0 and �i ¼ 0:0. See also Section 8 below.

The algebraic-differential equation system which is defined by the functions Fi must be specified in a
subroutine ODEDEF supplied by the user. The user must also specify the coupling points � in the array
XI.

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.2 [NP3546/20A]

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. For simple problems in Cartesian co-ordinates, this system is obtained by replacing the space
derivatives by the usual central, three-point finite-difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified three-
point formula which maintains second order accuracy. In total there are NPDE� NPTSþ NCODE ODEs
in time direction. This system is then integrated forwards in time using a backward differentiation formula
(BDF) or a Theta method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software
Systems (ed J C Mason and M G Cox) 59–72 Chapman and Hall

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in one
space variable SIAM J. Sci. Statist. Comput. 11 (1) 1–32

5 Parameters

1: NPDE – INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE � 1.

2: M – INTEGER Input

On entry: the co-ordinate system used:

M ¼ 0

Indicates Cartesian co-ordinates.

M ¼ 1

Indicates cylindrical polar co-ordinates.

M ¼ 2

Indicates spherical polar co-ordinates.

Constraint: 0 � M � 2.

3: TS – real Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS ¼ TOUT.

Constraint: TS < TOUT.

4: TOUT – real Input

On entry: the final value of t to which the integration is to be carried out.

5: PDEDEF – SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Pi;j, Qi and Ri which define the system of PDEs. The

functions may depend on x, t, U , Ux and V . Qi may depend linearly on _VV . PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PHF=D03PHA.

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.3

The specification of PDEDEF for D03PHF is:

SUBROUTINE PDEDEF(NPDE, T, X, U, UX, NCODE, V, VDOT, P, Q, R, IRES)

INTEGER NPDE, NCODE, IRES
real T, X, U(NPDE), UX(NPDE), V(*), VDOT(*),

1 P(NPDE,NPDE), Q(NPDE), R(NPDE)

The specification of PDEDEF for D03PHA is:

SUBROUTINE PDEDEF(NPDE, T, X, U, UX, NCODE, V, VDOT, P, Q, R, IRES,
1 IUSER, RUSER)

INTEGER NPDE, NCODE, IRES, IUSER(*)
real T, X, U(NPDE), UX(NPDE), V(*), VDOT(*),

1 P(NPDE,NPDE), Q(NPDE), R(NPDE), RUSER(*)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – real Input

On entry: the current value of the independent variable t.

3: X – real Input

On entry: the current value of the space variable x.

4: U(NPDE) – real array Input

On entry: UðiÞ contains the value of the component Uiðx; tÞ, for i ¼ 1; 2; . . . ;NPDE.

5: UX(NPDE) – real array Input

On entry: UXðiÞ contains the value of the component ð@Uiðx; tÞÞ=ð@xÞ, for
i ¼ 1; 2; . . . ;NPDE.

6: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

7: V(*) – real array Input

On entry: VðiÞ contains the value of component ViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

8: VDOT(*) – real array Input

On entry: VDOTðiÞ contains the value of component _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

Note: _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Qj, for

j ¼ 1; 2; . . . ;NPDE.

9: P(NPDE,NPDE) – real array Output

On exit: Pði; jÞ must be set to the value of Pi;jðx; t; U; Ux; V Þ, for i; j ¼ 1; 2; . . . ;NPDE.

10: Q(NPDE) – real array Output

On exit: QðiÞ must be set to the value of Qiðx; t; U; Ux; V ; _VV Þ, for i ¼ 1; 2; . . . ;NPDE.

11: R(NPDE) – real array Output

On exit: RðiÞ must be set to the value of Riðx; t; U; Ux; V Þ, for i ¼ 1; 2; . . . ;NPDE.

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.4 [NP3546/20A]

12: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets IRES ¼ 3, then D03PHF=D03PHA returns to the calling
(sub)program with the error indicator set to IFAIL ¼ 4.

Note: the following are additional parameters for specific use of PDEDEF with D03PHA. Users of

D03PHF therefore need not read the remainder of this description.

13: IUSER(*) – INTEGER array User Workspace
14: RUSER(*) – real array User Workspace

PDEDEF is called from D03PHA with the parameters IUSER and RUSER as supplied to
D03PHA. You are free to use the arrays IUSER and RUSER to supply information to
PDEDEF.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03PHF=D03PHA is
called. Parameters denoted as Input must not be changed by this procedure.

6: BNDARY – SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions �i and �i which describe the boundary conditions, as given
in (4).

The specification of BNDARY for D03PHF is:

SUBROUTINE BNDARY(NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA, GAMMA,
1 IRES)

INTEGER NPDE, NCODE, IBND, IRES
real T, U(NPDE), UX(NPDE), V(*), VDOT(*), BETA(NPDE),

1 GAMMA(NPDE)

The specification of BNDARY for D03PHA is:

SUBROUTINE BNDARY(NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA, GAMMA,
1 IRES, IUSER, RUSER)

INTEGER NPDE, NCODE, IBND, IRES, IUSER(*)
real T, U(NPDE), UX(NPDE), V(*), VDOT(*), BETA(NPDE),

1 GAMMA(NPDE), RUSER(*)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – real Input

On entry: the current value of the independent variable t.

3: U(NPDE) – real array Input

On entry: UðiÞ contains the value of the component Uiðx; tÞ at the boundary specified by
IBND, for i ¼ 1; 2; . . . ;NPDE.

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.5

4: UX(NPDE) – real array Input

On entry: UXðiÞ contains the value of the component ð@Uiðx; tÞÞ=ð@xÞ at the boundary
specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

5: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

6: V(*) – real array Input

On entry: VðiÞ contains the value of component ViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

7: VDOT(*) – real array Input

On entry: VDOTðiÞ contains the value of component _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

Note: _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE, may only appear linearly in Qj, for

j ¼ 1; 2; . . . ;NPDE.

8: IBND – INTEGER Input

On entry: specifies which boundary conditions are to be evaluated. If IBND ¼ 0, then
BNDARY must set up the coefficients of the left-hand boundary, x ¼ a. If IBND 6¼ 0,
then BNDARY must set up the coefficients of the right-hand boundary, x ¼ b.

9: BETA(NPDE) – real array Output

On exit: BETAðiÞ must be set to the value of �iðx; tÞ at the boundary specified by IBND,
for i ¼ 1; 2; . . . ;NPDE.

10: GAMMA(NPDE) – real array Output

On exit: GAMMAðiÞ must be set to the value of �iðx; t; U; Ux; V ; _VV Þ at the boundary
specified by IBND, for i ¼ 1; 2; . . . ;NPDE.

11: IRES – INTEGER Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets IRES ¼ 3, then D03PHF=D03PHA returns to the calling
(sub)program with the error indicator set to IFAIL ¼ 4.

Note: the following are additional parameters for specific use of BNDARY with D03PHA. Users of

D03PHF therefore need not read the remainder of this description.

12: IUSER(*) – INTEGER array User Workspace
13: RUSER(*) – real array User Workspace

BNDARY is called from D03PHA with the parameters IUSER and RUSER as supplied to
D03PHA. You are free to use the arrays IUSER and RUSER to supply information to
BNDARY.

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.6 [NP3546/20A]

BNDARY must be declared as EXTERNAL in the (sub)program from which D03PHF=D03PHA is
called. Parameters denoted as Input must not be changed by this procedure.

7: U(NEQN) – real array Input/Output

On entry: the initial values of the dependent variables defined as follows:

UðNPDE� ðj� 1Þ þ iÞ contain Uiðxj; t0Þ, for i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NPTS and

UðNPTS� NPDEþ iÞ contain Viðt0Þ, for i ¼ 1; 2; . . . ;NCODE.

On exit: the computed solution Uiðxj; tÞ, for i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NPTS, and VkðtÞ, for
k ¼ 1; 2; . . . ;NCODE, evaluated at t ¼ TS.

8: NPTS – INTEGER Input

On entry: the number of mesh points in the interval ½a; b�.
Constraint: NPTS � 3.

9: X(NPTS) – real array Input

On entry: the mesh points in the space direction. X(1) must specify the left-hand boundary, a, and
X(NPTS) must specify the right-hand boundary, b.

Constraint: Xð1Þ < Xð2Þ < � � � < XðNPTSÞ.

10: NCODE – INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE � 0.

11: ODEDEF – SUBROUTINE, supplied by the user. External Procedure

ODEDEF must evaluate the functions F , which define the system of ODEs, as given in (3). If the
user wishes to compute the solution of a system of PDEs only (NCODE ¼ 0), ODEDEF must be
the dummy routine D03PCK for D03PHF or D53PCK for D03PHA. (D03PCK and D53PCK are
included in the NAG Fortran Library; however, their names may be implementation-dependent: see
the Users’ Note for your implementation for details.)

The specification of ODEDEF for D03PHF is:

SUBROUTINE ODEDEF(NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX, RCP,
1 UCPT, UCPTX, F, IRES)

INTEGER NPDE, NCODE, NXI, IRES
real T, V(*), VDOT(*), XI(*), UCP(NPDE,*),

1 UCPX(NPDE,*), RCP(NPDE,*), UCPT(NPDE,*),
2 UCPTX(NPDE,*), F(*)

The specification of ODEDEF for D03PHA is:

SUBROUTINE ODEDEF(NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX, RCP,
1 UCPT, UCPTX, F, IRES, IUSER, RUSER)

INTEGER NPDE, NCODE, NXI, IRES, IUSER(*)
real T, V(*), VDOT(*), XI(*), UCP(NPDE,*),

1 UCPX(NPDE,*), RCP(NPDE,*), UCPT(NPDE,*),
2 UCPTX(NPDE,*), F(*), RUSER(*)

1: NPDE – INTEGER Input

On entry: the number of PDEs in the system.

2: T – real Input

On entry: the current value of the independent variable t.

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.7

3: NCODE – INTEGER Input

On entry: the number of coupled ODEs in the system.

4: V(*) – real array Input

On entry: VðiÞ contains the value of component ViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

5: VDOT(*) – real array Input

On entry: VDOTðiÞ contains the value of component _VViðtÞ, for i ¼ 1; 2; . . . ;NCODE.

6: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

7: XI(*) – real array Input

On entry: XIðiÞ contains the ODE/PDE coupling points, �i, i ¼ 1; 2; . . . ;NXI.

8: UCP(NPDE,*) – real array Input

On entry: UCPði; jÞ contains the value of Uiðx; tÞ at the coupling point x ¼ �j, for

i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

9: UCPX(NPDE,*) – real array Input

On entry: UCPXði; jÞ contains the value of ð@Uiðx; tÞÞ=ð@xÞ at the coupling point x ¼ �j,
for i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

10: RCP(NPDE,*) – real array Input

On entry: RCPði; jÞ contains the value of the flux Ri at the coupling point x ¼ �j, for
i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

11: UCPT(NPDE,*) – real array Input

On entry: UCPTði; jÞ contains the value of ð@UiÞ=ð@tÞ at the coupling point x ¼ �j, for
i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

12: UCPTX(NPDE,*) – real array Input

On entry: UCPTXði; jÞ contains the value of ð@2UiÞ=ð@x@tÞ at the coupling point x ¼ �j,
for i ¼ 1; 2; . . . ;NPDE; j ¼ 1; 2; . . . ;NXI.

13: F(*) – real array Output

On exit: FðiÞ must contain the ith component of F , for i ¼ 1; 2; . . . ;NCODE, where F is
defined as

F ¼ G�A _VV �B
U�
t

U�
xt

� �
;

or

F ¼ �A _VV �B
U�
t

U�
xt

� �
:

The definition of F is determined by the input value of IRES.

14: IRES – INTEGER Input/Output

On entry: the form of F that must be returned in the array F. If IRES ¼ 1, then the
equation (5) above must be used. If IRES ¼ �1, then the equation (6) above must be
used.

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.8 [NP3546/20A]

On exit: should usually remain unchanged. However, the user may reset IRES to force the
integration routine to take certain actions as described below:

IRES ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 6.

IRES ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set IRES ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets IRES ¼ 3, then D03PHF=D03PHA returns to the calling
(sub)program with the error indicator set to IFAIL ¼ 4.

Note: the following are additional parameters for specific use of ODEDEF with D03PHA. Users of

D03PHF therefore need not read the remainder of this description.

15: IUSER(*) – INTEGER array User Workspace
16: RUSER(*) – real array User Workspace

ODEDEF is called from D03PHA with the parameters IUSER and RUSER as supplied to
D03PHA. You are free to use the arrays IUSER and RUSER to supply information to
ODEDEF.

ODEDEF must be declared as EXTERNAL in the (sub)program from which D03PHF=D03PHA is
called. Parameters denoted as Input must not be changed by this procedure.

12: NXI – INTEGER Input

On entry: the number of ODE/PDE coupling points.

Constraints:

NXI ¼ 0 if NCODE ¼ 0,
NXI � 0 if NCODE > 0.

13: XI(*) – real array Input

Note: the dimension of the array XI must be at least maxð1;NXIÞ.
On entry: XIðiÞ, i ¼ 1; 2; . . . ;NXI, must be set to the ODE/PDE coupling points.

Constraint: Xð1Þ � XIð1Þ < XIð2Þ < � � � < XIðNXIÞ � XðNPTSÞ.

14: NEQN – INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN ¼ NPDE� NPTSþ NCODE.

15: RTOL(*) – real array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL ¼ 1 or 2 and at least NEQN if
ITOL ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0 for all relevant i.

16: ATOL(*) – real array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL ¼ 1 or 3 and at least NEQN if
ITOL ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0 for all relevant i.

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.9

17: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D03PHF=D03PHA
whether to interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be
satisfied is kei=wik < 1:0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � jUij þ ATOLð1Þ
2 scalar vector RTOLð1Þ � jUij þ ATOLðiÞ
13 vector scalar RTOLðiÞ � jUij þ ATOLð1Þ
14 vector vector RTOLðiÞ � jUij þ ATOLðiÞ

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, UðiÞ, for i ¼ 1; 2; . . . ;NEQN.

The choice of norm used is defined by the parameter NORM, see below.

Constraint: 1 � ITOL � 4.

18: NORM – CHARACTER*1 Input

On entry: the type of norm to be used. Two options are available:

NORM ¼ ’M’

Maximum norm.

NORM ¼ ’A’

Averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

Unorm ¼

ffi
1
NEQN

XNEQN
i¼1

ðUðiÞ=wiÞ2
vuut ;

while for the maximum norm

Unorm ¼ max
i

jUðiÞ=wij:

See the description of the ITOL parameter for the formulation of the weight vector w.

Constraint: NORM ¼ ’M’ or ’A’.

19: LAOPT – CHARACTER*1 Input

On entry: the type of matrix algebra required. The possible choices are:

LAOPT ¼ ’F’

Full matrix routines to be used.

LAOPT ¼ ’B’

Banded matrix routines to be used.

LAOPT ¼ ’S’

Sparse matrix routines to be used.

Constraint: LAOPT ¼ ’F’; ’B’ or ’S’.

Note: the user is recommended to use the banded option when no coupled ODEs are present
(i.e., NCODE ¼ 0).

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.10 [NP3546/20A]

20: ALGOPT(30) – real array Input

On entry: ALGOPT may be set to control various options available in the integrator. If the user
wishes to employ all the default options, then ALGOPT(1) should be set to 0.0. Default values will
also be used for any other elements of ALGOPT set to zero. The permissible values, default values,
and meanings are as follows:

ALGOPT(1) selects the ODE integration method to be used. If ALGOPTð1Þ ¼ 1:0, a BDF
method is used and if ALGOPTð1Þ ¼ 2:0, a Theta method is used. The default
value is ALGOPTð1Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 2:0, then ALGOPTðiÞ, for i ¼ 2; 3; 4 are not used.

ALGOPT(2) specifies the maximum order of the BDF integration formula to be used.
ALGOPT(2) may be 1.0, 2.0, 3.0, 4.0 or 5.0. The default value is
ALGOPTð2Þ ¼ 5:0.

ALGOPT(3) specifies what method is to be used to solve the system of nonlinear equations
arising on each step of the BDF method. If ALGOPTð3Þ ¼ 1:0 a modified Newton
iteration is used and if ALGOPTð3Þ ¼ 2:0 a functional iteration method is used. If
functional iteration is selected and the integrator encounters difficulty, then there is
an automatic switch to the modified Newton iteration. The default value is
ALGOPTð3Þ ¼ 1:0.

ALGOPT(4) specifies whether or not the Petzold error test is to be employed. The Petzold error
test results in extra overhead but is more suitable when algebraic equations are
present, such as Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ;NPDE for some i or when there is no
_VViðtÞ dependence in the coupled ODE system. If ALGOPTð4Þ ¼ 1:0, then the
Petzold test is used. If ALGOPTð4Þ ¼ 2:0, then the Petzold test is not used. The
default value is ALGOPTð4Þ ¼ 1:0.

If ALGOPTð1Þ ¼ 1:0, then ALGOPTðiÞ, for i ¼ 5; 6; 7 are not used.

ALGOPT(5) specifies the value of Theta to be used in the Theta integration method.
0:51 � ALGOPTð5Þ � 0:99.

The default value is ALGOPTð5Þ ¼ 0:55.

ALGOPT(6) specifies what method is to be used to solve the system of nonlinear equations
arising on each step of the Theta method. If ALGOPTð6Þ ¼ 1:0, a modified
Newton iteration is used and if ALGOPTð6Þ ¼ 2:0, a functional iteration method is
used. The default value is ALGOPTð6Þ ¼ 1:0.

ALGOPT(7) specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If
ALGOPTð7Þ ¼ 1:0, then switching is allowed and if ALGOPTð7Þ ¼ 2:0, then
switching is not allowed. The default value is ALGOPTð7Þ ¼ 1:0.

ALGOPT(11) specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the parameter ITASK. If
ALGOPTð1Þ 6¼ 0:0, a value of 0.0 for ALGOPT(11), say, should be specified even
if ITASK subsequently specifies that tcrit will not be used.

ALGOPT(12) specifies the minimum absolute step size to be allowed in the time integration. If
this option is not required, ALGOPT(12) should be set to 0.0.

ALGOPT(13) specifies the maximum absolute step size to be allowed in the time integration. If
this option is not required, ALGOPT(13) should be set to 0.0.

ALGOPT(14) specifies the initial step size to be attempted by the integrator. If
ALGOPTð14Þ ¼ 0:0, then the initial step size is calculated internally.

ALGOPT(15) specifies the maximum number of steps to be attempted by the integrator in any one
call. If ALGOPTð15Þ ¼ 0:0, then no limit is imposed.

ALGOPT(23) specifies what method is to be used to solve the nonlinear equations at the initial

point to initialise the values of U , Ut, V and _VV . If ALGOPTð23Þ ¼ 1:0, a modified

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.11

Newton iteration is used and if ALGOPTð23Þ ¼ 2:0, functional iteration is used.
The default value is ALGOPTð23Þ ¼ 1:0.

ALGOPT(29) and ALGOPT(30) are used only for the sparse matrix algebra option, LAOPT ¼ ’S’.

ALGOPT(29) governs the choice of pivots during the decomposition of the first Jacobian matrix.
It should lie in the range 0:0 < ALGOPTð29Þ < 1:0, with smaller values biasing the
algorithm towards maintaining sparsity at the expense of numerical stability. If
ALGOPT(29) lies outside this range then the default value is used. If the routines
regard the Jacobian matrix as numerically singular then increasing ALGOPT(29)
towards 1.0 may help, but at the cost of increased fill-in. The default value is
ALGOPTð29Þ ¼ 0:1.

ALGOPT(30) is used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPT(29)) below which an internal error is invoked. If ALGOPT(30) is greater
than 1.0 no check is made on the pivot size, and this may be a necessary option if
the Jacobian is found to be numerically singular (see ALGOPT(29)). The default
value is ALGOPTð30Þ ¼ 0:0001.

21: W(NW) – real array Workspace
22: NW – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which
D03PHF=D03PHA is called. Its size depends on the type of matrix algebra selected:

LAOPT ¼ ’F’,

NW � NEQN� NEQNþ NEQNþ NWKRESþ LENODE,

LAOPT ¼ ’B’,

NW � ð3�MLUþ 1Þ � NEQNþ NWKRESþ LENODE,

LAOPT ¼ ’S’,

NW � 4� NEQNþ 11� NEQN=2þ 1þ NWKRESþ LENODE.

where MLU ¼ the lower or upper half bandwidths, and MLU ¼ 2� NPDE� 1, for PDE problems
only, and MLU ¼ NEQN� 1, for coupled PDE/ODE problems.

NWKRES ¼ NPDE� ðNPTSþ 6� NXIþ 3� NPDEþ 15Þ þ NXIþ NCODEþ 7� NPTSþ 2
when NCODE > 0, and NXI > 0.

NWKRES ¼ NPDE� ðNPTSþ 3� NPDEþ 21Þ � NCODEþ 7� NPTSþ 3 when NCODE > 0,
and NXI ¼ 0.

NWKRES ¼ NPDE� ðNPTSþ 3� NPDEþ 21Þ þ 7� NPTSþ 4 when NCODE ¼ 0.

LENODE ¼ ð6þ intðALGOPTð2ÞÞÞ � NEQNþ 50, when the BDF method is used and

LENODE ¼ 9� NEQNþ 50, when the Theta method is used.

Note: when using the sparse option, the value of NW may be too small when supplied to the
integrator. An estimate of the minimum size of NW is printed on the current error message unit if
ITRACE > 0 and the routine returns with IFAIL ¼ 15.

23: IW(NIW) – INTEGER array Output

On exit: the following components of the array IW concern the efficiency of the integration.

IW(1) contains the number of steps taken in time.

IW(2) contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation of
the functions in the boundary conditions.

IW(3) contains the number of Jacobian evaluations performed by the time integrator.

IW(4) contains the order of the ODE method last used in the time integration.

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.12 [NP3546/20A]

IW(5) contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution using the
LU decomposition of the Jacobian matrix.

24: NIW – INTEGER Input

On entry: the dimension of the array IW. Its size depends on the type of matrix algebra selected:

25: ITASK – INTEGER Input

On entry: specifies the task to be performed by the ODE integrator. The permitted values of ITASK
and their meanings are detailed below:

ITASK ¼ 1

Normal computation of output values U at t ¼ TOUT.

ITASK ¼ 2

One step and return.

ITASK ¼ 3

Stop at first internal integration point at or beyond t ¼ TOUT.

ITASK ¼ 4

Normal computation of output values U at t ¼ TOUT but without overshooting t ¼ tcrit
where tcrit is described under the parameter ALGOPT.

ITASK ¼ 5

Take one step in the time direction and return, without passing tcrit, where tcrit is described
under the parameter ALGOPT.

Constraint: 1 � ITASK � 5.

26: ITRACE – INTEGER Input

On entry: the level of trace information required from D03PHF=D03PHA and the underlying ODE
solver. ITRACE may take the value �1, 0, 1, 2, or 3. If ITRACE < �1, then �1 is assumed and
similarly if ITRACE > 3, then 3 is assumed. If ITRACE ¼ �1, no output is generated. If
ITRACE ¼ 0, only warning messages from the PDE solver are printed on the current error message
unit (see X04AAF). If ITRACE > 0, then output from the underlying ODE solver is printed on the
current advisory message unit (see X04ABF). This output contains details of Jacobian entries, the
nonlinear iteration and the time integration during the computation of the ODE system. The
advisory messages are given in greater detail as ITRACE increases. Users are advised to set
ITRACE ¼ 0, unless they are experienced with Chapter D02M/N.

27: IND – INTEGER Input/Output

On entry: IND must be set to 0 or 1.

IND ¼ 0

Starts or restarts the integration in time.

IND ¼ 1

Continues the integration after an earlier exit from the routine. In this case, only the
parameters TOUT and IFAIL should be reset between calls to D03PHF=D03PHA.

Constraint: 0 � IND � 1.

On exit: IND ¼ 1.

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.13

28: IFAIL – INTEGER Input/Output

Note: for D03PHA, IFAIL does not occur in this position in the parameter list. See the additional

parameters described below.

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

Note: the following are additional parameters for specific use with D03PHA. Users of D03PHF therefore need

not read the remainder of this section.

28: IUSER(*) – INTEGER array User Workspace

Note: the first dimension of the array IUSER must be at least 1.

IUSER is not used by D03PHA, but is passed directly to the external procedures PDEDEF,
BNDARY and ODEDEF and may be used to pass information to these routines.

29: RUSER(*) – real array User Workspace

Note: the first dimension of the array RUSER must be at least 1.

RUSER is not used by D03PHA, but is passed directly to the external procedures PDEDEF,
BNDARY and ODEDEF and may be used to pass information to these routines.

30: CWSAV(10) – CHARACTER*80 array Workspace

31: LWSAV(100) – LOGICAL array Workspace

32: IWSAV(505) – INTEGER array Workspace

33: RWSAV(1100) – real array Workspace

34: IFAIL – INTEGER Input/Output

Note: see the parameter description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOUT� TS is too small,
or ITASK 6¼ 1, 2, 3, 4 or 5,
or M 6¼ 0, 1 or 2,
or at least one of the coupling points defined in array XI is outside the interval

[X(1),X(NPTS)],
or M > 0 and Xð1Þ < 0:0,
or NPTS < 3,
or NPDE < 1,
or NORM 6¼ ’A’ or ’M’,
or LAOPT 6¼ ’F’; ’B’ or ’S’,
or ITOL 6¼ 1, 2, 3 or 4,
or IND 6¼ 0 or 1,

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.14 [NP3546/20A]

or incorrectly defined user mesh, XðiÞ � Xðiþ 1Þ, for some i ¼ 1; 2; . . . ;NPTS� 1,
or NW is too small,
or NIW is too small,
or NCODE and NXI are incorrectly defined,
or NEQN 6¼ NPDE� NPTSþ NCODE,
or either an element of RTOL or ATOL < 0:0,
or all the elements of RTOL and ATOL are zero.

IFAIL ¼ 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and RTOL,
across the integration range from the current point t ¼ TS. The components of U contain the
computed values at the current point t ¼ TS.

IFAIL ¼ 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t ¼ TS. The problem
may have a singularity, or the error requirement may be inappropriate.

IFAIL ¼ 4

In setting up the ODE system, the internal initialisation routine was unable to initialise the derivative
of the ODE system. This could be due to the fact that IRES was repeatedly set to 3 in at least one
of the user-supplied subroutines PDEDEF, BNDARY or ODEDEF, when the residual in the
underlying ODE solver was being evaluated.

IFAIL ¼ 5

In solving the ODE system, a singular Jacobian has been encountered. The user should check his
problem formulation.

IFAIL ¼ 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of the
user-supplied subroutines PDEDEF, BNDARY or ODEDEF. Integration was successful as far as
t ¼ TS.

IFAIL ¼ 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL ¼ 8

In one of the user-supplied routines, PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid
value.

IFAIL ¼ 9

A serious error has occurred in an internal call to D02NNF. Check problem specification and all
parameters and array dimensions. Setting ITRACE ¼ 1 may provide more information. If the
problem persists, contact NAG.

IFAIL ¼ 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL is
unlikely to produce any change in the computed solution. (Only applies when the user is not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.15

IFAIL ¼ 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error description
may be directed to the current error message unit). If using the sparse matrix algebra option, the
values of ALGOPT(29) and ALGOPT(30) may be inappropriate.

IFAIL ¼ 12

In solving the ODE system, the maximum number of steps specified in ALGOPT(15) has been
taken.

IFAIL ¼ 13

Some error weights wi became zero during the time integration (see description of ITOL). Pure
relative error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has become zero.
The integration was succesful as far as t ¼ TS.

IFAIL ¼ 14

The flux function Ri was detected as depending on time derivatives, which is not permissible.

IFAIL ¼ 15

When using the sparse option, the value of NIW or NW was not sufficient (more detailed
information may be directed to the current error message unit).

7 Accuracy

The routine controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so the
accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of varying
the accuracy parameters ATOL and RTOL.

8 Further Comments

The parameter specification allows the user to include equations with only first-order derivatives in the
space direction but there is no guarantee that the method of integration will be satisfactory for such
systems. The position and nature of the boundary conditions in particular are critical in defining a stable
problem. It may be advisable in such cases to reduce the whole system to first-order and to use the Keller
box scheme routine D03PKF.

The time taken by the routine depends on the complexity of the parabolic system and on the accuracy
requested. For a given system and a fixed accuracy it is approximately proportional to NEQN.

9 Example

This problem provides a simple coupled system of one PDE and one ODE.

ðV1Þ2
@U1

@t
� xV1

_VV1

@U1

@x
¼ @2U1

@x2

_VV1 ¼ V1U1 þ
@U1

@x
þ 1þ t;

for t 2 ½10�4; 0:1� 2i�; for i ¼ 1; 2; . . . ; 5; x 2 ½0; 1�.
The left boundary condition at x ¼ 0 is

@U1

@x
¼ �V1 exp t:

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.16 [NP3546/20A]

The right boundary condition at x ¼ 1 is

@U1

@x
¼ �V1

_VV1

The initial conditions at t ¼ 10�4 are defined by the exact solution:

V1 ¼ t; and U1ðx; tÞ ¼ expftð1� xÞg � 1:0; x 2 ½0; 1�;
and the coupling point is at �1 ¼ 1:0.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

Note: the following program illustrates the use of D03PHF. An equivalent program illustrating the use of

D03PHA is available with the supplied Library and is also available from the NAG web site.

* D03PHF Example Program Text
* Mark 16 Revised. NAG Copyright 1993.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, NCODE, M, NXI, NEQN, NIW, NWKRES,

+ LENODE, NW
PARAMETER (NPDE=1,NPTS=21,NCODE=1,M=0,NXI=1,

+ NEQN=NPDE*NPTS+NCODE,NIW=24,
+ NWKRES=NPDE*(NPTS+6*NXI+3*NPDE+15)
+ +NCODE+NXI+7*NPTS+2,LENODE=11*NEQN+50,
+ NW=NEQN*NEQN+NEQN+NWKRES+LENODE)

* .. Scalars in Common ..
real TS

* .. Local Scalars ..
real TOUT
INTEGER I, IFAIL, IND, IT, ITASK, ITOL, ITRACE
LOGICAL THETA
CHARACTER LAOPT, NORM

* .. Local Arrays ..
real ALGOPT(30), ATOL(1), EXY(NPTS), RTOL(1), U(NEQN),

+ W(NW), X(NPTS), XI(1)
INTEGER IW(NIW)

* .. External Subroutines ..
EXTERNAL BNDARY, D03PHF, EXACT, ODEDEF, PDEDEF, UVINIT

* .. Common blocks ..
COMMON /TAXIS/TS

* .. Executable Statements ..
WRITE (NOUT,*) ’D03PHF Example Program Results’
ITRACE = 0
ITOL = 1
ATOL(1) = 1.0e-4
RTOL(1) = ATOL(1)
WRITE (NOUT,99997) ATOL, NPTS

*
* Set break-points
*

DO 20 I = 1, NPTS
X(I) = (I-1.0e0)/(NPTS-1.0e0)

20 CONTINUE
*

XI(1) = 1.0e0
NORM = ’A’
LAOPT = ’F’
IND = 0
ITASK = 1

*
* Set THETA to .TRUE. if the Theta integrator is required
*

THETA = .FALSE.
DO 40 I = 1, 30

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.17

ALGOPT(I) = 0.0e0
40 CONTINUE

IF (THETA) THEN
ALGOPT(1) = 2.0e0

ELSE
ALGOPT(1) = 0.0e0

END IF
*
* Loop over output value of t
*

TS = 1.0e-4
TOUT = 0.0e0
WRITE (NOUT,99999) X(1), X(5), X(9), X(13), X(21)
CALL UVINIT(NPDE,NPTS,X,U,NCODE,NEQN)
DO 60 IT = 1, 5

TOUT = 0.1e0*(2**IT)
IFAIL = -1

*
CALL D03PHF(NPDE,M,TS,TOUT,PDEDEF,BNDARY,U,NPTS,X,NCODE,ODEDEF,

+ NXI,XI,NEQN,RTOL,ATOL,ITOL,NORM,LAOPT,ALGOPT,W,NW,
+ IW,NIW,ITASK,ITRACE,IND,IFAIL)

*
* Check against the exact solution
*

CALL EXACT(TOUT,NPTS,X,EXY)
WRITE (NOUT,99998) TS
WRITE (NOUT,99995) U(1), U(5), U(9), U(13), U(21), U(22)
WRITE (NOUT,99994) EXY(1), EXY(5), EXY(9), EXY(13), EXY(21), TS

60 CONTINUE
WRITE (NOUT,99996) IW(1), IW(2), IW(3), IW(5)
STOP

*
99999 FORMAT (’ X ’,5F9.3,/)
99998 FORMAT (’ T = ’,F6.3)
99997 FORMAT (//’ Simple coupled PDE using BDF ’,/’ Accuracy require’,

+ ’ment =’,e10.3,’ Number of points = ’,I4,/)
99996 FORMAT (’ Number of integration steps in time = ’,I6,/’ Number o’,

+ ’f function evaluations = ’,I6,/’ Number of Jacobian eval’,
+ ’uations =’,I6,/’ Number of iterations = ’,I6,/)

99995 FORMAT (1X,’App. sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3)
99994 FORMAT (1X,’Exact sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3,/)

END
*

SUBROUTINE UVINIT(NPDE,NPTS,X,U,NCODE,NEQN)
* Routine for PDE initial values
* .. Scalar Arguments ..

INTEGER NCODE, NEQN, NPDE, NPTS
* .. Array Arguments ..

real U(NEQN), X(NPTS)
* .. Scalars in Common ..

real TS
* .. Local Scalars ..

INTEGER I
* .. Intrinsic Functions ..

INTRINSIC EXP
* .. Common blocks ..

COMMON /TAXIS/TS
* .. Executable Statements ..

DO 20 I = 1, NPTS
U(I) = EXP(TS*(1.0e0-X(I))) - 1.0e0

20 CONTINUE
U(NEQN) = TS
RETURN
END

*
SUBROUTINE ODEDEF(NPDE,T,NCODE,V,VDOT,NXI,XI,UCP,UCPX,RCP,UCPT,

+ UCPTX,F,IRES)
* .. Scalar Arguments ..

real T
INTEGER IRES, NCODE, NPDE, NXI

* .. Array Arguments ..

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.18 [NP3546/20A]

real F(*), RCP(NPDE,*), UCP(NPDE,*), UCPT(NPDE,*),
+ UCPTX(NPDE,*), UCPX(NPDE,*), V(*), VDOT(*),
+ XI(*)

* .. Executable Statements ..
IF (IRES.EQ.1) THEN

F(1) = VDOT(1) - V(1)*UCP(1,1) - UCPX(1,1) - 1.0e0 - T
ELSE IF (IRES.EQ.-1) THEN

F(1) = VDOT(1)
END IF
RETURN
END

*
SUBROUTINE PDEDEF(NPDE,T,X,U,UX,NCODE,V,VDOT,P,Q,R,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NCODE, NPDE

* .. Array Arguments ..
real P(NPDE,NPDE), Q(NPDE), R(NPDE), U(NPDE),

+ UX(NPDE), V(*), VDOT(*)
* .. Executable Statements ..

P(1,1) = V(1)*V(1)
R(1) = UX(1)
Q(1) = -X*UX(1)*V(1)*VDOT(1)
RETURN
END

*
SUBROUTINE BNDARY(NPDE,T,U,UX,NCODE,V,VDOT,IBND,BETA,GAMMA,IRES)

* .. Scalar Arguments ..
real T
INTEGER IBND, IRES, NCODE, NPDE

* .. Array Arguments ..
real BETA(NPDE), GAMMA(NPDE), U(NPDE), UX(NPDE),

+ V(*), VDOT(*)
* .. Intrinsic Functions ..

INTRINSIC EXP
* .. Executable Statements ..

BETA(1) = 1.0e0
IF (IBND.EQ.0) THEN

GAMMA(1) = -V(1)*EXP(T)
ELSE

GAMMA(1) = -V(1)*VDOT(1)
END IF
RETURN
END

*
SUBROUTINE EXACT(TIME,NPTS,X,U)

* Exact solution (for comparison purpose)
* .. Scalar Arguments ..

real TIME
INTEGER NPTS

* .. Array Arguments ..
real U(NPTS), X(NPTS)

* .. Local Scalars ..
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
DO 20 I = 1, NPTS

U(I) = EXP(TIME*(1.0e0-X(I))) - 1.0e0
20 CONTINUE

RETURN
END

9.2 Program Data

None.

D03 – Partial Differential Equations D03PHF=D03PHA

[NP3546/20A] D03PHF=D03PHA.19

9.3 Program Results

D03PHF Example Program Results

Simple coupled PDE using BDF
Accuracy requirement = 0.100E-03 Number of points = 21

X 0.000 0.200 0.400 0.600 1.000

T = 0.200
App. sol. 0.222 0.174 0.128 0.084 0.001 ODE sol. = 0.200
Exact sol. 0.221 0.174 0.127 0.083 0.000 ODE sol. = 0.200

T = 0.400
App. sol. 0.494 0.379 0.273 0.176 0.002 ODE sol. = 0.400
Exact sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400

T = 0.800
App. sol. 1.229 0.901 0.622 0.384 0.008 ODE sol. = 0.798
Exact sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800

T = 1.600
App. sol. 3.959 2.610 1.629 0.917 0.027 ODE sol. = 1.594
Exact sol. 3.953 2.597 1.612 0.896 0.000 ODE sol. = 1.600

T = 3.200
App. sol. 23.469 11.974 5.885 2.665 0.074 ODE sol. = 3.184
Exact sol. 23.533 11.936 5.821 2.597 0.000 ODE sol. = 3.200

Number of integration steps in time = 33
Number of function evaluations = 470
Number of Jacobian evaluations = 16
Number of iterations = 111

D03PHF=D03PHA NAG Fortran Library Manual

D03PHF=D03PHA.20 (last) [NP3546/20A]

	D03PHF
	1 Purpose
	2 Specifications
	2.1 Specification for D03PHF
	2.2 Specification for D03PHA

	3 Description
	4 References
	5 Parameters
	NPDE
	M
	TS
	TOUT
	PDEDEF
	NPDE
	T
	X
	U
	UX
	NCODE
	V
	VDOT
	P
	Q
	R
	IRES
	IUSER
	RUSER

	BNDARY
	NPDE
	T
	U
	UX
	NCODE
	V
	VDOT
	IBND
	BETA
	GAMMA
	IRES
	IUSER
	RUSER

	U
	NPTS
	X
	NCODE
	ODEDEF
	NPDE
	T
	NCODE
	V
	VDOT
	NXI
	XI
	UCP
	UCPX
	RCP
	UCPT
	UCPTX
	F
	IRES
	IUSER
	RUSER

	NXI
	XI
	NEQN
	RTOL
	ATOL
	ITOL
	NORM
	LAOPT
	ALGOPT
	W
	NW
	IW
	NIW
	ITASK
	ITRACE
	IND
	IFAIL
	IUSER
	RUSER
	CWSAV
	LWSAV
	IWSAV
	RWSAV
	IFAIL_D03PHA

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9
	IFAIL = 10
	IFAIL = 11
	IFAIL = 12
	IFAIL = 13
	IFAIL = 14
	IFAIL = 15

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities

